Yu. N. Usenko, S. M. Lukashov, and T. É. Bezmenova

It is shown that sulfolane- and sulfolenesulfonates are stable in pyridine solutions at low temperatures. On the basis of this, a reliable method for their synthesis in 70-90% yields was developed.

It has been reported [1,2] that sulfolanyl esters of arene(alkane)sulfonic acids can be used to introduce a sulfolane ring into various classes of compounds. A new method for the preparation of arylsulfolanes, which are of interest as intermediates [3], from 3-sulfolanesulfonates has been developed. However, there is still no satisfactory method for the preparation of sulfolanesulfonates. During the synthesis of esters of p-toluenesulfonic acid and hydroxy derivatives of sulfolane (II) and sulfolene (IV) in pyridine at $0-20^{\circ}$ C, it was found [4] that esterification is complicated by secondary reactions to give the unstable thiophene S,S-dioxide [5] and products of its subsequent transformation. This lowers the yield of sulfolanesulfonates to 30-40%. We have found that esters of hydroxysulfolanes (I-III) and hydroxysulfolene (IV) are stable in pyridine solution at about -20° ; this made it possible to develop a reliable method for the preparation of various sulfolanesulfonates in high yields (70-90%).

TABLE I		$\mathbf{Z} = \mathbf{O} \mathbf{S} \mathbf{O}_2 \mathbf{R}$				
R	Z	mp, ℃	Empirical formula	S, %		Viold
				found	calc.	<i>%</i>
CH₃ C6H₅ C6H₄CH₃- <i>p</i>	CH ₃ SO ₂	98 92 82	$\begin{array}{c} C_6 H_{12} O_5 S_2 \\ C_{11} H_{14} O_5 S_2 \\ C_{12} H_{16} O_5 S_2 \end{array}$	28,5 22,0 21,2	28,1 22,1 21,1	80 80 80
CH ₃ C ₆ H ₅ C ₆ H ₄ Cl- <i>p</i> C ₆ H ₄ CH ₃ - <i>p</i> C ₆ H ₄ NO ₂ - <i>m</i>	RSO ₃ cis	220 157 216 167 ⁴ 245	$C_{6}H_{12}O_{8}S_{3}$ $C_{16}H_{16}O_{8}S_{3}$ $C_{16}H_{14}Cl_{2}O_{8}S_{3}$	30,8 22,4 19,4	31,2 22,2 19,2	85 80 80 65
CH ₃ C ₆ H ₅ C ₆ H ₄ CH ₃ - <i>p</i> C ₆ H ₄ CH ₃ - <i>p</i>	RSO ₃ Trans	184 172 145 ⁴ 162	$C_{16}H_{14}C_{2}O_{8}S_{3}$ $C_{16}H_{16}O_{8}S_{3}$ $C_{16}H_{16}C_{8}S_{3}$	30,9 22,3 19,4	31,2 22,2 19,2	75 75 60 75
$C_6H_4NO_2-m$ CH_3 C_6H_5 $C_6H_4CH_3-p$ $C_6H_4CH_3-p$		102 177 164 133 115	$C_{16}H_{14}N_2O_{12}S_3$ $C_{5}H_9CIO_5S_2$ $C_{16}H_{11}CIO_5S_2$ $C_{11}H_{13}CIO_5S_2$	N 5,3 25,7 20,7 20,2	N 5,4 25,8 20,6 19,7	55 70 70 60
C_6H_4CI-p CH_3 C_6H_5 $C_6H_4CH_3-p$	500	143 126 116 1384	$C_{10}H_{10}C_{12}O_5S_2$ $C_5H_8O_5S_2$ $C_{10}H_{10}O_5S_2$	30,2 23,3	30,2 23,4	75 90 65 85
C_6H_4Cl-p $C_6H_4NO_2-m$		126 192	C ₁₀ H ₉ ClO ₅ S ₂ C ₁₀ H ₉ NO ₇ S ₂	20,5 20,2	20,8 20,1	90 70

Institute of the Chemistry of High-Molecular-Weight Compounds, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 11, pp. 1489-1490, November, 1972. Original article submitted October 5, 1971.

© 1974 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York, N. Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for \$15.00.

I a X = H; b $X = CH_{3}$; II a X = Cis - OH; b X = trans - OH; III X = CI; R = Alk, Ar

EXPERIMENTAL

The reaction was carried out at -20 to -15° by the addition of a stoichiometric amount of sulfonyl chloride to a solution of the appropriate hydroxysulfolane in pyridine. The mixture was held at -15 to -5° for 2 h and was then poured over ice. The sulfolanesulfonate was removed by filtration, washed successively with dilute (1:5) sulfuric acid and water, and crystallized from alcohol. The compounds obtained are presented in Table 1.

LITERATURE CITED

- 1. S. M. Lukashov, L. F. Lur'e, Yu. N. Usenko, and T. É. Bezmenova, "Synthesis and properties of some ester-ethers of the sulfolane series," Summaries of Papers Presented at the 11th Ukrainian Conference on Organic Chemistry [in Russian], Dnepropetrovsk (1971).
- 2. T. É. Bezmenova and T. V. Lysukho, Khim. Geterotsikl. Soedin., 1481 (1971).
- 3. T. É. Bezmenova, T. V. Dysukho, and R. A. Dorofeeva, USSR Author's Certificate No. 234,423; Byull. Izobr., No. 4 (1969).
- 4. M. Prochazka and V. Horak, Coll. Czech. Chem. Comm., 24, 2278 (1959).
- 5. W. J. Bailej and E. W. Cummins, J. Am. Chem. Soc., <u>76</u>, <u>19</u>36 (1954).